extension | φ:Q→Aut N | d | ρ | Label | ID |
C14.1(C22×S3) = D7×Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4- | C14.1(C2^2xS3) | 336,137 |
C14.2(C22×S3) = D28⋊5S3 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4- | C14.2(C2^2xS3) | 336,138 |
C14.3(C22×S3) = D28⋊S3 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4 | C14.3(C2^2xS3) | 336,139 |
C14.4(C22×S3) = S3×Dic14 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4- | C14.4(C2^2xS3) | 336,140 |
C14.5(C22×S3) = D12⋊D7 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4 | C14.5(C2^2xS3) | 336,141 |
C14.6(C22×S3) = D84⋊C2 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4+ | C14.6(C2^2xS3) | 336,142 |
C14.7(C22×S3) = D21⋊Q8 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4 | C14.7(C2^2xS3) | 336,143 |
C14.8(C22×S3) = D6.D14 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4 | C14.8(C2^2xS3) | 336,144 |
C14.9(C22×S3) = D12⋊5D7 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4- | C14.9(C2^2xS3) | 336,145 |
C14.10(C22×S3) = D14.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4+ | C14.10(C2^2xS3) | 336,146 |
C14.11(C22×S3) = C4×S3×D7 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 84 | 4 | C14.11(C2^2xS3) | 336,147 |
C14.12(C22×S3) = D7×D12 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 84 | 4+ | C14.12(C2^2xS3) | 336,148 |
C14.13(C22×S3) = S3×D28 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 84 | 4+ | C14.13(C2^2xS3) | 336,149 |
C14.14(C22×S3) = C28⋊D6 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 84 | 4 | C14.14(C2^2xS3) | 336,150 |
C14.15(C22×S3) = C2×Dic3×D7 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | | C14.15(C2^2xS3) | 336,151 |
C14.16(C22×S3) = Dic7.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4 | C14.16(C2^2xS3) | 336,152 |
C14.17(C22×S3) = C42.C23 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4- | C14.17(C2^2xS3) | 336,153 |
C14.18(C22×S3) = C2×S3×Dic7 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | | C14.18(C2^2xS3) | 336,154 |
C14.19(C22×S3) = Dic3.D14 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | 4 | C14.19(C2^2xS3) | 336,155 |
C14.20(C22×S3) = C2×D21⋊C4 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | | C14.20(C2^2xS3) | 336,156 |
C14.21(C22×S3) = C2×C21⋊D4 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | | C14.21(C2^2xS3) | 336,157 |
C14.22(C22×S3) = C2×C3⋊D28 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | | C14.22(C2^2xS3) | 336,158 |
C14.23(C22×S3) = C2×C7⋊D12 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 168 | | C14.23(C2^2xS3) | 336,159 |
C14.24(C22×S3) = C2×C21⋊Q8 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 336 | | C14.24(C2^2xS3) | 336,160 |
C14.25(C22×S3) = D7×C3⋊D4 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 84 | 4 | C14.25(C2^2xS3) | 336,161 |
C14.26(C22×S3) = S3×C7⋊D4 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 84 | 4 | C14.26(C2^2xS3) | 336,162 |
C14.27(C22×S3) = D6⋊D14 | φ: C22×S3/D6 → C2 ⊆ Aut C14 | 84 | 4+ | C14.27(C2^2xS3) | 336,163 |
C14.28(C22×S3) = C2×Dic42 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 336 | | C14.28(C2^2xS3) | 336,194 |
C14.29(C22×S3) = C2×C4×D21 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 168 | | C14.29(C2^2xS3) | 336,195 |
C14.30(C22×S3) = C2×D84 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 168 | | C14.30(C2^2xS3) | 336,196 |
C14.31(C22×S3) = D84⋊11C2 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 168 | 2 | C14.31(C2^2xS3) | 336,197 |
C14.32(C22×S3) = D4×D21 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 84 | 4+ | C14.32(C2^2xS3) | 336,198 |
C14.33(C22×S3) = D4⋊2D21 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 168 | 4- | C14.33(C2^2xS3) | 336,199 |
C14.34(C22×S3) = Q8×D21 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 168 | 4- | C14.34(C2^2xS3) | 336,200 |
C14.35(C22×S3) = Q8⋊3D21 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 168 | 4+ | C14.35(C2^2xS3) | 336,201 |
C14.36(C22×S3) = C22×Dic21 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 336 | | C14.36(C2^2xS3) | 336,202 |
C14.37(C22×S3) = C2×C21⋊7D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C14 | 168 | | C14.37(C2^2xS3) | 336,203 |
C14.38(C22×S3) = C14×Dic6 | central extension (φ=1) | 336 | | C14.38(C2^2xS3) | 336,184 |
C14.39(C22×S3) = S3×C2×C28 | central extension (φ=1) | 168 | | C14.39(C2^2xS3) | 336,185 |
C14.40(C22×S3) = C14×D12 | central extension (φ=1) | 168 | | C14.40(C2^2xS3) | 336,186 |
C14.41(C22×S3) = C7×C4○D12 | central extension (φ=1) | 168 | 2 | C14.41(C2^2xS3) | 336,187 |
C14.42(C22×S3) = S3×C7×D4 | central extension (φ=1) | 84 | 4 | C14.42(C2^2xS3) | 336,188 |
C14.43(C22×S3) = C7×D4⋊2S3 | central extension (φ=1) | 168 | 4 | C14.43(C2^2xS3) | 336,189 |
C14.44(C22×S3) = S3×C7×Q8 | central extension (φ=1) | 168 | 4 | C14.44(C2^2xS3) | 336,190 |
C14.45(C22×S3) = C7×Q8⋊3S3 | central extension (φ=1) | 168 | 4 | C14.45(C2^2xS3) | 336,191 |
C14.46(C22×S3) = Dic3×C2×C14 | central extension (φ=1) | 336 | | C14.46(C2^2xS3) | 336,192 |
C14.47(C22×S3) = C14×C3⋊D4 | central extension (φ=1) | 168 | | C14.47(C2^2xS3) | 336,193 |